The potential energy of a particle varies with distance $x$ from a fixed origin as $U\, = \,\frac{{A\sqrt x }}{{{x^2} + B}}$ Where $A$ and $B$ are dimensional constants then find the dimensional formula for $A/B$

  • A

    ${M^2}{L^1}{T^{ - 2}}$

  • B

    ${M^1}{L^{3/2}}{T^{ - 2}}$

  • C

    ${M^0}{L^{1/5}}{T^{ - 3}}$

  • D

    ${M^2}{L^{2/2}}{T^{ - 3}}$

Similar Questions

If orbital velocity of planet is given by $v = {G^a}{M^b}{R^c}$, then

From the equation $\tan \theta = \frac{{rg}}{{{v^2}}}$, one can obtain the angle of banking $\theta $ for a cyclist taking a curve (the symbols have their usual meanings). Then say, it is

If $R$ and $L$ represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency

It is estimated that per minute each $cm^2$ of earth receives about $2\ cal (1\ cal = 4.18\ J)$ of heat energy from the sun. This is called Solar constant. In $SI$ units the value is :-

The density of a material in $SI\, units$ is $128\, kg\, m^{-3}$. In certain units in which the unit of length is $25\, cm$ and the unit of mass $50\, g$, the numerical value of density of the material is

  • [JEE MAIN 2019]